Download PDF by Vincent Rivasseau (Chief Editor): Annales Henri Poincaré - Volume 7

By Vincent Rivasseau (Chief Editor)

Articles during this volume:

1-20
On the T3-Gowdy Symmetric Einstein-Maxwell Equations
Hans Ringström

21-43
Partially Classical restrict of the Nelson Model
Jean Ginibre, Fabio Nironi and Giorgio Velo

45-58
The Douglas-Kroll-Heß technique: Convergence and Block-Diagonalization of Dirac Operators
Heinz Siedentop and Edgardo Stockmeyer

59-104
From Repeated to non-stop Quantum Interactions
Stéphane Attal and Yan Pautrat

105-124
Time hold up and Short-Range Scattering in Quantum Waveguides
Rafael Tiedra de Aldecoa

125-143
A Characterization of version Multi-colour Sets
Jeong-Yup Lee and Robert V. Moody

145-160
The Spectrum of Schrödinger Operators with Poisson style Random Potential
Kazunori Ando, Akira Iwatsuka, Masahiro Kaminaga and Fumihiko Nakano

161-198
Relaxation Time of Quantized Toral Maps
Albert Fannjiang, Stéphane Nonnenmacher and Lech Wołowski

199-232
An life evidence for the Gravitating BPS Monopole
Todd A. Oliynyk

233-252
On a attribute preliminary worth challenge in Plasma Physics
Simone Calogero

253-301
Quantum Backreaction (Casimir) impact II. Scalar and Electromagnetic Fields
Andrzej Herdegen

303-333
Scattering of Magnetic facet States
Christoph Buchendorfer and Gian Michele Graf

335-363
Energetic and Dynamic homes of a Quantum Particle in a Spatially Random Magnetic box with consistent Correlations alongside one Direction
Hajo Leschke, Simone Warzel and Alexandra Weichlein

365-379
Solution of a Mountain go challenge for the Isomerization of a Molecule with One loose Atom
Mathieu Lewin

381-396
High strength Asymptotics and hint formulation for the Perturbed Harmonic Oscillator
Alexander Pushnitski and Ian Sorrell

397-421
Quantum Incompressibility and Razumov Stroganov variety Conjectures
Vincent Pasquier

423-446
Algebraic Topology for minimum Cantor Sets
Jean-Marc Gambaudo and Marco Martens

447-469
Quantum distinctive Ergodicity for Maps at the Torus
Lior Rosenzweig

471-511
Interface Instability below pressured Displacements
Anna De Masi, Nicolas Dirr and Errico Presutti

513-525
Spectral Shift functionality within the huge Coupling consistent Limit
Mouez Dimassi

527-561
Resolvent Estimates for the Laplacian on Asymptotically Hyperbolic Manifolds
Jean-Marc Bouclet

563-581
Distributional Borel Summability of Perturbation idea for the Quantum Hénon-Heiles Model
Emanuela Caliceti

583-601
A normal Resonance idea according to Mourre’s Inequality
Laura Cattaneo, Gian Michele Graf and Walter Hunziker

603-619
Incompressible Representations of the Birman-Wenzl-Murakami Algebra
Vincent Pasquier

621-660
Long Time movement of NLS Solitary Waves in a Confining Potential
B. Lars G. Jonsson, Jürg Fröhlich, Stephen Gustafson and Israel Michael Sigal

661-687
Stability of Atoms within the Brown–Ravenhall Model
Sergey Morozov and Semjon Vugalter

689-710
Clustering of Eigenvalues on Translation Surfaces
Luc Hillairet

711-730
Circular Symmetry of Pinwheel Diffraction
Robert V. Moody, Derek Postnikoff and Nicolae Strungaru

731-780
Supersymmetric Dirichlet Operators, Spectral Gaps, and Correlations
Oliver Matte

781-789
Multi-dimensional Schrödinger Operators without unfavorable Spectrum
Oleg Safronov

791-807
Topological components Derived from Bohmian Mechanics
Detlef Dürr, Sheldon Goldstein, James Taylor, Roderich Tumulka and Nino Zanghì

809-898
Fermi Liquid habit within the 2nd Hubbard version at Low Temperatures
G. Benfatto, A. Giuliani and V. Mastropietro

899-931
Asymptotics for the Low-Lying Eigenstates of the Schrödinger Operator with Magnetic box close to Corners
Virginie Bonnaillie-Noël and Monique Dauge

933-973
Spectral Convergence of Quasi-One-Dimensional Spaces
Olaf Post

975-1011
Positive Energy-Momentum Theorem for AdS-Asymptotically Hyperbolic Manifolds
Daniel Maerten

1013-1034
Spacetime Causality within the learn of the Hankel Transform
Jean-François Burnol

1035-1064
Instabilité Spectrale Semiclassique d’Opérateurs Non-Autoadjoints II
Mildred Hager

1065-1083
The AC Stark impression, Time-Dependent Born–Oppenheimer Approximation, and Franck–Condon Factors
George A. Hagedorn, Vidian Rousse and Steven W. Jilcott

1085-1098
Upper Bounds at the expense of Quantum Ergodicity
Roman Schubert

1099-1211
Fractional Hamiltonian Monodromy
Nikolaií N. Nekhoroshev, Dmitrií A. Sadovskií and Boris I. Zhilinskií

1213-1216
Editorial: in Memoriam Daniel Arnaudon
Luc Frappat, Petr Kulish, Eric Ragoucy, Vincent Rivasseau and Paul Sorba

1217-1268
Spectrum and Bethe Ansatz Equations for the Uq(gl(N)) Closed and Open Spin Chains in any Representation
Daniel Arnaudon, N. Crampé, Anastasia Doikou, Luc Frappat and Eric Ragoucy

1269-1325
On the R-Matrix cognizance of Yangians and their Representations
Daniel Arnaudon, Alexander Molev and Eric Ragoucy

1327-1349
Sugawara and Vertex Operator buildings for Deformed Virasoro Algebras
Daniel Arnaudon, Jean Avan, Luc Frappat, Eric Ragoucy and Junichi Shiraishi

1351-1373
Exotic Bialgebra S03: Representations, Baxterisation and Applications
Daniel Arnaudon, Amithaba Chakrabarti, Vladimir okay. Dobrev and Stephen G. Mihov

1375-1393
Bosonization and Vertex Algebras with Defects
M. Mintchev and P. Sorba

1395-1428
Algebraic illustration of Correlation features in Integrable Spin Chains
H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama

1429-1448
Boundary strength of the Open XXZ Chain from New targeted Solutions
Rajan Murgan, Rafael I. Nepomechie and Chi Shi

1449-1462
The Elliptic Scattering conception of the 1/2-XYZ and better Order Deformed Virasoro Algebras
Davide Fioravanti and Marco Rossi

1463-1476
Classification of the options of continuing Rational Semi-Dynamical mirrored image Equations
Jean Avan and Geneviève Rollet

1477-1529
The Schrödinger-Virasoro Lie workforce and Algebra: illustration conception and Cohomological Study
Claude Roger and Jérémie Unterberger

1531-1540
The Six-Vertex version at Roots of solidarity and a few optimum Weight Representations of the sl2 Loop Algebra
Tetsuo Deguchi

1541-1554
Weight functionality and Nested Bethe Ansatz
Stanislav Pakuliak

1555-1567
Fusion of Baxter’s Elliptic R-Matrix and the Vertex-Face Correspondence
Hitoshi Konno

1569-1578
Non-Commutative Ricci and Calabi Flows
A. Zuevsky

1579-1590
Mean-Field concept for Heisenberg Zigzag Ladder: floor country strength and Spontaneous Symmetry Breaking
Vagharsh V. Mkhitaryan and Tigran A. Sedrakyan

1591-1600
The Two-Site Bose–Hubbard Model
Jon hyperlinks, Angela Foerster, Arlei Prestes Tonel and Gilberto Santos

1601-1628
Propagators for Noncommutative box Theories
Razvan Gurau, Vincent Rivasseau and Fabien Vignes-Tourneret

Show description

Read Online or Download Annales Henri Poincaré - Volume 7 PDF

Best nonfiction_5 books

Extra resources for Annales Henri Poincaré - Volume 7

Sample text

IN ∗ Index for a few lines only the copies of H as H1 , H2 , . . Define then a unitary operator ILn as the canonical ampliation to H0 ⊗ H1 ⊗ H2 ⊗ . . of the operator which acts as IL on H0 ⊗ Hn ; that is, ILn acts as the identity on copies of H other than Hn . The effect of the n-th interaction in the Schr¨ odinger picture writes then ρ → ILn ρ IL∗n , for every density matrix ρ, so that the effect of the n first interactions is ρ → un ρ u∗n where (un )n∈IN is a sequence in B(H0 ⊗ IN ∗ H) which satisfies the equations un+1 = ILn+1 un u0 = I.

5 Analyticity of |D0 |1/2 U(γ)|D0 |−1/2 We first need some technical results: Lemma 3 The operator |D0 |1/2 (P (γ) − P0 )|D0 |−1/2 has an analytic continuation into the disc D := {γ ∈ C | |γ| < 1/2}. 52 H. Siedentop and E. Stockmeyer Ann. Henri Poincar´e Proof. We follow the same strategy as in Lemma 1. The analyticity follows from (15), the fact that |V |1/2 Tηn = (|V |(D0 − iη)−1 )n |V |1/2 , and the following estimate γ n |D0 |1/2 (D0 − iη)−1 (|V |(D0 − iη)−1 )n |V ||D0 |−1/2 (D0 − iη)−1 ≤ 2(2γ)n sup f,g∈H G0 (η)f (29) G0 (η)g where we used Hardy’s inequality | · |−2 ≤ 4|D0 |2 .

5 Analyticity of |D0 |1/2 U(γ)|D0 |−1/2 We first need some technical results: Lemma 3 The operator |D0 |1/2 (P (γ) − P0 )|D0 |−1/2 has an analytic continuation into the disc D := {γ ∈ C | |γ| < 1/2}. 52 H. Siedentop and E. Stockmeyer Ann. Henri Poincar´e Proof. We follow the same strategy as in Lemma 1. The analyticity follows from (15), the fact that |V |1/2 Tηn = (|V |(D0 − iη)−1 )n |V |1/2 , and the following estimate γ n |D0 |1/2 (D0 − iη)−1 (|V |(D0 − iη)−1 )n |V ||D0 |−1/2 (D0 − iη)−1 ≤ 2(2γ)n sup f,g∈H G0 (η)f (29) G0 (η)g where we used Hardy’s inequality | · |−2 ≤ 4|D0 |2 .

Download PDF sample

Annales Henri Poincaré - Volume 7 by Vincent Rivasseau (Chief Editor)


by Richard
4.0

Rated 4.64 of 5 – based on 38 votes